Environmental Impact of Renewable Energy Technologies

The purpose of using Renewable Energy is to provide energy with reduced emissions of greenhouse gases. The concentration of CO2 in the atmosphere remained below 280 parts per million (ppm) for 800 thousand years until the start of the Industrial Revolution in the eighteenth century.

The concentration has risen from 280 ppm in 1780 up to 405 ppm in 2017. The effects of this accelerating trend on our future environment are unknown, but scientists are debating the effects of these trends and the risks of reaching tipping points that may not be reversible.

So we need to come back down to the present and consider the Environmental Impact of any new project.

Adopting Renewable Energy technologies is one recommended way of reducing the environmental impact of what we do.

However, we have to consider the environmental impact of any renewable energy technologies we adopt. There are some environmental costs to most of the renewable energy technologies so it is worth examining these.

Wind turbines

The good news is that wind turbines can convert the power of the wind into electricity. Wind power produces no toxic pollution or global warming emissions in use.

The bad news is that there is a groundswell of objection to the unsightly nature of wind turbines – especially in areas of outstanding natural beauty. The government has tried to counter these objections by offering large subsidies to those who install wind turbines. This, in turn, enrages some taxpayers who are effectively being required to pay for machines to which they object strongly on environmental grounds.

There are also objections from taxpayers who are required to subsidize machines that are rarely used at more than 30% of their potential capacity.

There are objections from those who observe the mortal impact on birds and bats and objections from those who have to endure the noise of the turbine blades. The accountants solemnly calculate the embedded carbon of constructing the concrete platforms and masts for the blades to be mounted on.


Photovoltaic arrays convert sunlight to electricity. The environmental limitations are to the use of scare resources in manufacturing them and the inefficiencies of operation: this requires substantial taxpayer subsidy to encourage the up take of PVs.


The good news is that burning biomass is an alternative to burning fossil fuels. The limitation is that burning biomass releases 66% more CO2 than burning gas for the equivalent amount of heat. The debate progresses to questioning whether this CO2 should not count because it is releasing CO2 that has been captured over the last, say, fifteen years or whether there is an assumption that the CO2 released may be recaptured by biomass growth somewhere else over the next generation of growth.

Incomplete combustion yields carbon monoxide – a poisonous gas – soot and particulates, the precursors of acid rain. See Air Quality.

There are also suggestions that only waste biomass should be counted – because growing biomass, merely to burn it, prevents land being used for food production. It is widely acknowledged that burning wood from Brazilian rainforests is an environmental own goal: this represents carbon capture and storage in reverse. The accountants also calculate the embedded carbon of transporting wood chips across the oceans to satisfy legislative diktats.

Hydro electric

Hydro electric stations generate electricity from exploiting the natural forces of gravity and meteorology. Some issues are raised about altering the natural environment and loss of habitat for certain species.

Solar thermal

Solar thermal panels generate hot water from the natural energy in sunlight. The environmental impact is small, although some people object to the visual impact, especially on historic houses.

Asphalt solar collectors

An Asphalt Solar Collector also generates hot water from the natural energy in sunlight. The technology is embedded into roads and is invisible. There is no environmental cost of collecting heat from roads.

Air source heat pumps

An air source heat pump recovers heat from ambient air and transfers it into buildings to provide efficient heating. There is environmental impact from the noise created by fans circulating ambient air through the heat exchange elements, but the effect can be moderated by careful siting of the external equipment, as can the visual aspects.

Ground Source heat pumps

A ground source heat pump recovers heat from the ground and transfers it into buildings to provide very efficient heating. There is no environmental impact at all because a ground source heat pump installation provides an invisible heating system with no emissions of carbon (or any other gas at all) on site. A ground source heat pump uses a small amount of electricity to transfer a large amount of heat into a building. If the electricity is generated from a fossil fuel source then there will be CO2 emissions at the power station. As the grid is decarbonised this small element will also decrease.

Interseasonal Heat Transfer

Interseasonal Heat Transfer is an integration of renewable heat technologies that captures solar energy in summer, stores it in the ground in ThermalBanks over the autumn and delivers it to buildings in winter to provide very efficient heating. IHT uses ground source heat pumps to provide invisible heating systems. It also uses asphalt solar collectors to generate heat in the summer to charge ThermalBanks with solar energy so that its GSHPs can providing heating more efficiently than an unassisted ground source heat pump in winter.

Joined-Up Heating

It is now possible to chose a very efficient heating system for providing renewable heating – and renewable cooling – with no adverse environmental impact.

The Government now provides an up-front grant for installing heat pumps, and domestic installations are free from vat.


See Ground Source Heating       See Ground Source Cooling       See Ground Source Energy